Surface-active agents (surfactants) are chemicals found in detergents and other cleaning products. They interact with and emulsify stains (food and outdoor) and body soils. They also interact with skin and can cause 2 types of reactions in people with sensitive skin: irritancy and cytotoxicity. Surfactants are categorized into 5 types based on their physiochemical properties. Each surfactant has unique cleaning and irritant properties. Most detergents contain a mixture of surfactants. Certain combinations are used to reduce skin irritancy potential, and these may be beneficial for people with existing dermatologic disorders, such as atopic dermatitis.

<table>
<thead>
<tr>
<th>SURFACTANT/CHARGE</th>
<th>PROPERTIES¹,³,⁵</th>
<th>IRRITANCY POTENTIAL⁴</th>
<th>CYTOTOXICITY POTENTIAL⁴</th>
</tr>
</thead>
</table>
| ANIONIC | - Cleans a variety of stains
- Produces foam efficiently
- Binds to cations in hard water | High | Moderate |
| CATIONIC | - Interacts well with fabrics
- Commonly used in fabric conditioners | High | High |
| AMPHOTERIC | - Changes characteristics in different pH solutions | Moderate | High |
| ZWITTERIONIC | - Maintains both charges independent of pH | Moderate | High |
| NONIONIC | - Very effective in removing oil-based stains from clothing
- Relatively unaffected by hard water | Low | Low |

¹,³-5

Chemistry of Surfactants

Detergents are made up of chemicals called surfactants.¹ Each surfactant has a hydrophobic tail and a hydrophilic head group. The hydrophilic head group has an affinity to water molecules. This helps surfactants adsorb at both fabric-water and soil-water interfaces, displacing and solubilizing soils from fabric.² Surfactants also interact with water and air and generate foam to aid in detergency. They are categorized into 5 types with respect to their ionic charge: anionic, cationic, amphoteric, zwitterionic, and nonionic.¹,³

Skin Irritancy Potential of Surfactant Mixtures

On average, 2.5% of detergent remains on fabric after washing and 2 rinse cycles.⁶ Anionic surfactants form a higher amount of detergent residue than do nonionic surfactants.⁷ They also have high irritancy and moderate cytotoxicity potential.⁴ However, they have also been shown to be very effective cleaning agents.¹ In contrast, nonionic surfactants are mild on skin and effective at removing oil-based stains.³,⁴ Most detergents contain a mixture of surfactants to boost detergency. The resulting

Author Affiliations: The Sun Products Corporation, Trumbull, Connecticut (Dr Crawford); Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio (Dr Zirwas).
skin irritant response of surfactant mixtures can be categorized as additive, synergistic, or quenched. Surfactant mixtures that produce a quenched response are beneficial, as skin irritancy is reduced.8 When anionic and nonionic surfactants are mixed, the resulting quenched response reduces skin irritancy potential. This combination was studied in a series of 4-hour covered patch tests to investigate the effects of an anionic surfactant alone or in combination with either a nonionic or zwitterionic surfactant.8 Each participant had up to 4 patches applied of each test material, for increasing durations, to the upper outer arm. Compared with the anionic control group, the mixture of anionic and nonionic surfactants significantly reduced skin irritation potential. These results suggest that detergents containing nonionic surfactants may be beneficial for individuals with dermatologic disorders that predispose them to sensitive skin.9

ROLE OF SURFACTANTS IN SKIN IRRITATION

Surfactants can cause 2 types of skin reactions: irritancy and cytotoxicity.4,14 Skin irritancy occurs when surfactants react with and alter SC proteins and lipids. This increases TEWL, which leads to skin dehydration and compromised SC integrity.4,11 Cytotoxicity, which is more severe and is irreparable, occurs when surfactants cause cellular lysis. This increases SC permeability and vulnerability. Depending on their properties, surfactants cause varying degrees of skin reactions.

SKIN PHYSIOLOGY

The stratum corneum (SC) is the superficial layer of the skin. SC cells are surrounded by proteins and lipids, which sustain tissue integrity. The SC regulates transepidermal water loss (TEWL) to maintain adequate skin hydration. It also protects underlying tissues from infection and oxidation.10 Surfactants can interact with and compromise SC integrity, water content, and permeability.11 Consequently, the skin dries out and is vulnerable to irritation and inflammation.11,12 Patients with preexisting dermatologic disorders are particularly susceptible to the chemical effects of surfactants.13 Mechanical (nature and construction of fabric), climatic, and thermal factors, as well as the presence of hard water, can also exacerbate skin irritation potential.12

CONCLUSIONS

Surfactants are effective cleaning agents and are often used as mixtures in detergents.15 Each type of surfactant has unique cleaning and irritant properties, and certain mixtures can be used to reduce skin irritancy. The combination of anionic and nonionic surfactants produces a quenched irritancy potential response.8 A detergent with this particular combination of surfactants may be beneficial for people with sensitive skin.8

To read the full article (pp. 23-31), please visit the link: http://issuu.com/pulsemarketing/docs/skinmed_v12n1?e=5397957/6884092